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Abstract We quantify methane (CH4) emissions in California’s San Joaquin Valley (SJV) by using 4 days of
aircraft measurements from a field campaign during May–June 2010 together with a Bayesian inversion
method and a mass balance approach. For the inversion estimates, we use the FLEXible PARTicle
dispersion model (FLEXPART) to establish the source-receptor relationship between sampled atmospheric
concentrations and surface fluxes. Our prior CH4 emission estimates are from the California Greenhouse
Gas Emissions Measurements (CALGEM) inventory. We use three meteorological configurations to drive
FLEXPART and subsequently construct three inversions to analyze the final optimized estimates and their
uncertainty (one standard deviation). We conduct May and June inversions independently and derive similar
total CH4 emission estimates for the SJV: 135 ± 28Mg/h in May and 135± 19Mg/h in June. The inversion
result is 1.7 times higher than the prior estimate from CALGEM. We also use an independent mass balance
approach to estimate CH4 emissions in the northern SJV for one flight when meteorological conditions
allowed. The mass balance estimate provides a confirmation of our inversion results, and these two
independent estimates of the total CH4 emissions in the SJV are consistent with previous studies. In this
study, we provide optimized CH4 emissions estimates at 0.1° horizontal resolution. Using independent spatial
information on major CH4 sources, we estimate that livestock contribute 75–77% and oil/gas production
contributes 15–18% of the total CH4 emissions in the SJV. Livestock explain most of the discrepancies
between the prior and the optimized emissions from our inversion.

1. Introduction

Methane (CH4) is the second most significant greenhouse gas. It has a large global-warming potential and
mediates global tropospheric chemistry. Globally, more than 60% of total CH4 emissions are attributed to
human activities [Environmental Protection Agency, 2015], such as the natural gas and petroleum industries,
domestic livestock operations, landfills, rice cultivation, and coal mining. Reducing CH4 from human activity
is important for reducing risks associated with climate change. As the most populous state of the U.S. and a
major CH4 emitter, California enacted State Assembly Bill 32 (http://www.arb.ca.gov/cc/ab32/ab32.htm) in
2006 to reduce greenhouse gas emissions to 1990 emission levels by the year 2020 and to reduce green-
house gas emissions to 40% below 1990 levels by year 2030. Achieving this goal requires accurate accounting
of the magnitude and source attribution of CH4 emissions.

The Central Valley covers about 14% of California’s total land area and is the leading dairy-farming and
most productive agricultural region in California. Twenty percent of U.S. milk production occurs in
California, mostly in the Central Valley (http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?
documentID=1103). The California Greenhouse Gas Emissions Measurements (CALGEM, http://calgem.lbl.
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gov) project found that the Central Valley is the California region with the highest CH4 emissions [Zhao
et al., 2009; Jeong et al., 2012, 2013]. The San Joaquin Valley (SJV), the southern portion of the Central
Valley, contains a variety of potential CH4 sources of anthropogenic origin, including approximately 2 mil-
lion head of cattle and calves [National Agricultural Statistics Service, 2013], more than 75,000 active oil
wells, and many cities.

Current bottom-up inventories of CH4 sources in the SJV are quite uncertain. The Emission Database for
Global Atmospheric Research (EDGAR) version 4.2 global emission inventory at 0.1° × 0.1° horizontal resolu-
tion (http://edgar.jrc.ec.europa.eu) reports that the CH4 emissions from livestock in the SJV are 26.7Mg/h.
However, a bottom-up study from CALGEM at 0.1° × 0.1° horizontal resolution calculated CH4 emissions from
livestock in the San Joaquin Valley to be 60.4Mg/h, more than twice that of EDGAR version 4.2 [Jeong et al.,
2013]. The SJV is also a significant region for petroleum and natural gas production. A new bottom-up
study from Jeong et al. [2014] reports 3 to 7 times higher emissions from petroleum and natural gas produc-
tion than the California Air Resources Board (CARB) 2013 Oil and Gas Industry Survey Results and 2014
Greenhouse Gas Emissions Inventory.

To improve emission quantification, atmospheric measurements have increasingly been used to constrain
the bottom-up emission estimates. In the SJV, there are ongoing studies using the tower measurements to
estimate CH4 emissions [Zhao et al., 2009; Jeong et al., 2013, 2016]. Current satellite data have been used
to constrain CH4 in California, but CH4 emission estimates using satellite observations over the Central
Valley remain difficult because of the scarcity of observations [Wecht et al., 2014; Bousserez et al., 2016].

A field campaign named the California Research at the Nexus of Air Quality and Climate Change (CalNex)
[Ryerson et al., 2013] took place in California during May and June 2010. During CalNex, the NOAA WP-3 air-
craft collected intensive measurements, including CH4 mixing ratios, over the South Coast Air Basin and the
Central Valley. To identify contributions from individual source categories, the aircraft flew close to emission
sources with extensive horizontal and vertical coverages. The CalNex aircraft measurements provide a good
opportunity to conduct a top-down estimate of the CH4 emissions in these regions of California [Peischl et al.,
2013; Cui et al., 2015]. The large spatial coverage of the aircraft enables sampling of multiple CH4 sources
distributed across the complex terrain of the SJV, providing a useful complement to ground-based and
remote-sensing measurements.

This study uses a mesoscale inverse modeling technique to estimate CH4 emissions in the SJV based on air-
craft measurements from CalNex. This mesoscale inverse modeling system has already been employed to
estimate CH4 emissions in the South Coast Air Basin of California [Cui et al., 2015] using measurements from
the same campaign. The mass balance approach [White et al., 1976], an independent top-down method, is
applied in part of the SJV to provide confirmation of the inverse modeling results. We compare our top-down
CH4 emission estimates to three different inventories. We also compare our results with another inversion
analysis of the same region using tower measurements [Jeong et al., 2013, 2016].

The details of our methodology are described in section 2. Our optimized emissions and interpretation of the
results are presented in section 3. Conclusions are given in section 4.

2. Methods

In this section, we describe the atmospheric measurements of CH4 mixing ratios from the National Oceanic
and Atmospheric Administration (NOAA) WP-3 aircraft. We describe the prior CH4 emission inventories, the
construction of our atmospheric transport model used to build the source-receptor relationships, and the
design of our Bayesian inverse modeling. The mass balance approach, which provides an independent
estimate of CH4 emissions based on the aircraft measurements, is described.

2.1. Measurements

In CalNex, the NOAA WP-3 aircraft obtained in situ measurements over the SJV during four daytime flights
(7 May, 12 May, 16 June, and 18 June) (Figure 1). We classify the eight counties of the SJV into two subregions
named D1 and D2 (Figure 1a). D1 is the southern SJV including Madera, Fresno, Tulare, Kings, and Kern
Counties, and D2 is the northern SJV including San Joaquin, Stanislaus, and Merced Counties. D1 and D2 cor-
respond to region nos. 12 and 8, respectively, of Jeong et al. [2013]. The 7 May and 16 June flights flew over
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D1, and the 12 May and 18 June flights flew over D2 (Figures 1c and 1d). We excluded flight portions over the
ocean and during takeoff and landing from the Los Angeles area.

CH4 mixing ratios observed by the NOAA P-3 aircraft were measured once per second by using wavelength-
scanned-cavity-ring-down spectroscopy (Picarro 1301m) [Peischl et al., 2012, 2013]. The precision of the 1Hz
CH4measurement is ±1.4 ppbv, and the accuracy is estimated at ±1.2 ppbv. We aggregate these observations
into 30 s averages for use in the inversion framework, which, at a ground speed of approximately 100m s�1,
correspond to segments of about 3 km horizontally (Figure 2). This aggregated data set provides the receptor
points in our backward trajectory simulations from the atmospheric transport models described in section 2.3
and is used in an inverse-modeling analysis.

2.2. Prior Emission Inventory

A prior inventory provides critical information for Bayesian inversion modeling, particularly when atmo-
spheric measurements alone cannot fully constrain the spatial distribution of the emissions sources.
Inaccurate representation of the spatial distribution of emissions sources in a prior limits the performance
of inverse modeling [Xiang et al., 2013]. Therefore, we need to select the best available inventory for the prior
input. We compared three available CH4 inventories: a recent gridded top-down inventory based on the U.S.
Environmental Protection Agency (EPA) National Emissions Inventory (NEI 2011, https://www.epa.gov/air-
emissions-inventories/2011-national-emissions-inventory-nei-data) [Ahmadov et al., 2015], a recent gridded
bottom-up inventory designed to be consistent with the U.S. EPA Inventory of U.S. Greenhouse Gas
Emissions and Sinks (GHGI) for 2012 [Maasakkers et al., 2016], and a gridded bottom-up inventory from
CALGEM designed to match the CARB inventory for 2008 [Jeong et al., 2012, 2013]. These three inventories
provide annual average CH4 emission estimates.

Figure 1. (a) The San Joaquin Valley (SJV) and two subregions, the Southern SJV (D1) and the Northern SJV (D2). The back-
ground map is the prior inventory of CH4 emissions used in this study based on CALGEM, showing the annual average
emission rate (unit: μg s�1m�2). (b) The spatial distribution of the two major CH4 sources in the SJV: livestock and
active oil/gas wells. (c) Two NOAA P-3 flight tracks over the SJV in May 2010. The black rectangles highlight the locations
of the upwind transect in San Joaquin County and the downwind transect in Merced County used in the mass balance
estimate. (d) Two NOAA P-3 flight tracks over the SJV in June 2010.
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The spatial distributions of the three inventories are shown in Figure S1 in the supporting information, and
their total CH4 emissions for the SJV and its D1 and D2 subregions are listed in Table 1. The three inventories’
SJV total CH4 emission estimates range from 68 to 107Mg/h. We find distinct variations between the three
inventories’ spatial distributions of CH4 emissions from livestock and active oil and gas wells. CALGEM, devel-
oped by Zhao et al. [2009] and Jeong et al. [2012], relies onmore detailed local information about source loca-
tions and activity to generate the gridded CH4 emission estimates, compared with the other two inventories
based on EPA’s NEI and GHGI. For example, CALGEM’s spatial distributions for livestock and oil/gas sources
are based on the California Department of Water Resources land use survey database [Salas et al., 2009]
and the California Department of Conservation’s Division of Oil, Gas, and Geothermal Resources database
(http://www.conservation.ca.gov/dog/pubs_stats/annual_reports/Pages/annual_reports.aspx), respectively.

Figure 2. Airborne measurements of CH4 mixing ratios (averaged over 30 s) in the San Joaquin Valley, at 0–1500m asl and
excluding measurements taken over the ocean and during takeoff and landing from the Los Angeles area. Each data
point represents a receptor for the inverse modeling.

Table 1. Comparison of Total CH4 Emission Estimates in the San Joaquin Valley

SJV
(Mg/h)

D1
(Mg/h)

D2
(Mg/h) r2 Slope

Mean Bias
(Post-Prior) (ppbv)

“May case” optimized (this study, top-down) 135 ± 28 80 ± 17 55 ± 18 0.76 0.63 �9.1
“June case” optimized (this study, top-down) 135 ± 19 79 ± 17 56 ± 13 0.71 0.61 �5.5
“May case” prior (based on CALGEM, bottom-up) 80 52 28 0.49 0.25 �55.2
“June case” prior (based on CALGEM, bottom-up) 80 52 28 0.47 0.24 �31.8
Jeong et al. [2013] (tall tower network, top-down) – 120 ± 16 33 ± 5 – – –
Jeong et al. [2016] (tall tower network, top-down) 98–170 – – – – –
CH4 annual average Inventory (based on NEI 2011 [Ahmadov et al., 2015]) 68 46 22 – – –
CH4 annual average Inventory (based on EPA-GHGI 2012 [Maasakkers et al., 2016]) 107 75 32 – – –
Mass-balance approach (this study, top-down) – 69 ± 47 – – –
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Among the three inventories considered, CALGEM contains the most accurate spatial distributions for the
major CH4 sources in the Central Valley, and we therefore use CALGEM as the foundation of our prior inven-
tory. We also update the oil/gas source sector of CALGEM in the SJV according to emissions from Jeong et al.
[2014]. The CALGEM inventory is available at 0.1° × 0.1° spatial resolution, and we optimize the inventory at
the same resolution.

Similar to Cui et al. [2015], our study adjusts the magnitude of total CH4 emissions in each grid cell of the prior
annual average inventory, without differentiating source sectors. When we calculate the contributions from
different source sectors independently, we require extra spatial information. Figure 1b presents the spatial
information for the two dominant CH4 sources in the SJV: dairies (an important livestock-related activity
across the SJV) and active oil/gas wells [Jeong et al., 2013]. Like CALGEM, we obtained the spatial information
for livestock sources from Salas et al. [2008], and the spatial distribution of the active oil and gas wells was
taken from California’s Department of Conservation Division of Oil, Gas, and Geothermal Resources data-
base (http://www.conservation.ca.gov/dog/pubs_stats/annual_reports/Pages/annual_reports.aspx). Livestock
sources are highly concentrated in both the D1 and D2 subregions. Oil and gas production is mainly found
in the southern part of D1. In the SJV, the oil and gas production sector has much larger CH4 emissions than
oil/gas processing, transmission, and distribution [Jeong et al., 2014].

Although livestock and oil/gas production are the two major sources in the SJV, they are rarely collocated in
the same 0.1° grid cell, allowing for the estimation of total emissions from each of them. In this study, if a grid
cell includes more than one sector, only the sector with the highest emission in that cell is represented (this
situation occurs less than 5% of the time). We assume that the uncertainty of the total emissions estimates
due to the spatial partitioning of the two major sources is smaller than the transport uncertainty, and we
did not explicitly include the spatial partitioning uncertainty for the source contribution estimate in this
study. The similar spatial patterns shown in Figures 1a and 1b demonstrate that the prior inventory captures
the spatial patterns of major sources.

2.3. Atmospheric Transport Modeling

Following Cui et al. [2015], the FLEXPART-Weather Research Forecasting (WRF) Lagrangian model version 3.1
[Brioude et al., 2013] is used to calculate source-receptor relationships, a.k.a. footprints. The surface footprints
(sm2 kg�1) represent the residence time within a surface layer (below 100m above ground level) weighted
by the atmospheric density. We conducted three atmospheric transport simulations by using FLEXPART dri-
ven by three different meteorology configurations from the Weather Research Forecasting (WRF) model
(Table 2). The three WRF meteorological fields have a 4 × 4 km horizontal grid spacing. The first and second
meteorology configurations (WRF1 and WRF2) are from Angevine et al. [2012]. The third WRF configuration
(WRF3) is from Kim et al. [2016]. Using measurements from the same field campaign, WRF1 and WRF2 have
been used to estimate nitrous oxide emissions in the Central Valley [Xiang et al., 2013], and WRF3 has been
used to estimate ozone in the Los Angeles region [Kim et al., 2016]. Detailed information on evaluations of
planetary boundary layer height (PBLH), wind speed, and wind direction from the three transport models
can be found in Angevine et al. [2012] and Kim et al. [2016]. Here we show model evaluations by using
observations from the four flights in Figures S2–S4 and Table S1 in the supporting information.

Table 2. Names and Primary Configurations of Three WRF Runs Used in This Studya

Name Version Initialization PBL Scheme Grid Spacing (km) Vertical Levels LSM Data Wind Field

WRF1b WRF 3.3 ERA-Interim MYJ 4 60 Noah, UCM, MODIS Time-averaged winds
WRF2b WRF 3.3 NCEP-GFS MYJ 4 40 Slab, USGS Time-averaged winds
WRF3c WRF-Chem3.4 NCEP-GFS YSU 4 60 Noah, USGS Time-averaged winds

aWRF1 is initialized by the European Centre for Medium-Range Weather Forecasts’ Re-Analysis-Interim (ERA-Interim). WRF1 is coupled to the Noah Land Surface
Model with Moderate Resolution Imaging Spectroradiometer (MODIS) land products and a single-layer urban canopy model (UCM) [Chen and Dudhia, 2001]. The
Mellor-Yamada-Janjic (MYJ) scheme [Mellor and Yamada, 1982] is used to simulate planetary boundary layer (PBL). WRF2 is initialized by the National Centers for
Environmental Prediction (NCEP) Global Forecast System (GFS) [Kalnay et al., 1990]. The land surface model in WRF2 is a five-layer thermal diffusion land surface
scheme (“Slab”) [Dudhia, 1996] with U.S. Geological Survey (USGS) land products. WRF3 is initialized with data from the NCEP-GFS, and the PBL is simulated by
using the Yonsei University (YSU) boundary layer model [Hong et al., 2006].

bAngevine et al. [2012].
cKim et al. [2016].
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Correlations between any of the three CH4 simulations with differing meteorological configurations are no
larger than the correlations between any model simulation and the observations. Therefore, the three model
simulations can be treated as independent representations of the meteorology. Each model is used in our
inverse modeling system to derive the posterior emission estimates, and the final optimized emission esti-
mates are based on the mean value from the three estimates. Three meteorological models can only repre-
sent part of the phase space of model uncertainties. A complete estimate of transport model uncertainty
would require a larger ensemble and more comprehensive characterization [Angevine et al., 2014].

Ten thousand FLEXPART-WRF back trajectories were initiated at each receptor point along the flight track and
run for three days backward in time. We derive our surface footprint from FLEXPART-WRF at the same spatial
resolution (0.1° × 0.1°) as the prior. The surface footprints for the May and June inversions from each of the
transport models are shown in Figure 3.

Figure 4 presents the mean vertical profiles of CH4 mixing ratios in 100m vertical intervals over the SJV from
the aircraft measurements and from the three transport models using the CH4 prior inventory. The error bars
represent the standard deviations among the three different transport models. There is no obvious bias in the
simulated vertical mixing. There is a small bias in simulating CH4 in the upper part of the mean profile, but the
bias is statistically insignificant as it is smaller than the uncertainty range of the CH4 background determina-
tion (see next section). There is a systematic low bias in the modeled CH4 concentrations below 1600–1800m
above sea level (asl), which is attributed to a bias in the prior emission estimates as shown below.

2.4. Bayesian Inverse Modeling

We perform a four-dimensional (three spatial dimensions in the model plus time) inversion by using a
Bayesian framework by minimizing a cost function assuming lognormal distributions for the observed
enhancements and surface fluxes [Brioude et al., 2011]. The cost function used in the inversion framework is

J ¼ 1
2

ln y0ð Þ � ln Hxð Þð ÞTR�1 ln y0ð Þ � ln Hxð Þð Þ þ 1
2
α ln xð Þ � ln xbð Þð ÞTB�1 ln xð Þ � ln xbð Þð Þ;

where yo is the measured time series of CH4 mixing ratio enhancement above defined background; H is the
source-receptor relationship matrix calculated by FLEXPART-WRF; R and B are the error covariance matrices
of themodel-observationmismatch and the prior information, respectively; xb is the prior emission inventory;

Figure 3. Surface footprints calculated by FLEXPART for the previous 72 h with three different WRF configurations and averaged for the (top row) two May flights
and for the (bottom row) two June flights. The surface footprints (unit: s m2 kg�1) represent the sensitivity of the airborne measurements (Figure 2) to surface
emissions. Different scales are used for the footprints in the May and June cases to improve visualization.
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and x is the posterior emission inventory to be determined. The parameter α [Henze et al., 2009] balances
the errors of both covariance matrices in the minimization of the cost function to calculate the best
estimates of emissions.

The surface emission optimization applied in this study is based on the inverse modeling framework applied
in Cui et al. [2015]. Most CH4 mixing ratio enhancements were measured below 2.0 km altitude asl during the
four flights. To reduce the potential uncertainty in the transport models’ ability to distinguish between the
PBL and the free troposphere, we focus on the measurements (i.e., receptor points) below 1.5 km asl
(Figure 2). Choosing a threshold of 2.0 km or 1.0 km asl does not significantly affect our results.

For each flight, we plot the histogram of the observed CH4 mixing ratios below 1.5 km asl on the upwind side
of the domain. We choose the mode of this distribution as the background value. Based on the width of this
distribution, we estimate a 10 ppbv uncertainty in the background mixing ratio for each flight.

The NOAA P-3 flights over the SJV flew close to surface sources, so that the measurements were obtained
within hours from the time of emission. Therefore, it is reasonable to assume that photochemical loss of
CH4 can be neglected. Hence, CH4 is treated as a passive tracer in our mesoscale inverse system.

We conduct a cluster aggregation process for the spatial grid cells as described by Cui et al. [2015]. Surface
grid cells in the domain are clustered by using a neighbor method based on the information from the
Fisher information matrix [Bocquet et al., 2011]. We use this method to obtain inversion solutions efficiently
and to reduce cross correlations between surface fluxes during the inverse modeling. In this study, 4544
(64 × 71) grid cells resulted in 2024 clusters in our inverse modeling system.

The R and B covariancematrices are assumed to be diagonal matrices. R is calculated by the addition in quad-
rature of the 30 s aggregation uncertainty (i.e., the standard deviation of a 30 s interval, 10 ppbv for the mean
value), the background uncertainty (10 ppbv), and the uncertainty of each transport model (50% [Angevine
et al., 2014], 50 ppbv for the mean value) in simulating CH4 enhancements above background. The largest
uncertainty in R is that of the transport models. We assume a larger uncertainty in the models in this study
than in the Los Angeles basin [Cui et al., 2015] because of the inherent difficulty in modeling the transport
within the complex terrain of the Central Valley.

Jeong et al. [2013] classified the state of California into 13 subregions to conduct their inverse modeling and
assumed 70% uncertainties in each subregion for their prior inventory (CALGEM). We assume a 100% relative

Figure 4. Vertical profiles of 100m averaged measurements of CH4 enhancement mixing ratios, ΔCH4 (measured mixing
ratios in Figure 2 above a background derived for each flight; see text for details), simulations of ΔCH4from FLEXPART-WRF
using the prior and optimized emission estimates in the San Joaquin Valley for (left) May and (right) June 2010. The
error bars represent the standard deviations (1-sigma) of simulations from the three different transport models.
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uncertainty for each cluster in our prior, since one subregion from Jeong et al. [2013] is composed of multiple
clusters of our grid cells and because we updated the magnitude and spatial locations of oil and natural gas
production in the CALGEM inventory. We test the sensitivity of our results to the 70% assumption of the
prior’s uncertainty (compare Table S2 to Table 3). Using a prior uncertainty of 70% instead of 100% for
each cluster does not significantly affect our optimized emission estimates.

To carry out inverse modeling in the lognormal framework, we define all uncertainties as the arithmetic
standard deviation (SD[X]) for a variable (X), including the measurements, the background determination,
the transport model, the prior inventory, and the posterior estimates of each inversion. We define the covar-
iance error matrixes (R and B) as the squared scale parameter (σ2) of the variable (X). SD[X] and σ2 have the

following relationship: σ2 ¼ ln 1þ SD X½ �ð Þ2
E X½ �ð Þ2

� �
, where E[X] is the arithmetic mean.

For each subregion, the total emission estimate is calculated by summing the emission estimates of the clus-
ters in the region. The total uncertainty estimate for each subregion is calculated as the square root of the
sum of the variances along the diagonal in the posterior error covariance matrix. We do not include the
off-diagonal elements of this matrix because some are negative (indicating anticorrelation between two grid
cells), and including themwould result in a slightly smaller uncertainty estimate. Instead, we report the larger,
more conservative uncertainty based on the diagonal elements only. A similar uncertainty estimate was also
used in Jeong et al. [2013]. The optimized emissions estimates from each of the transport models are shown in
Table 3. The final optimized estimates and the associated uncertainties are built by a resampling method
shown in Table 3 from the three inversions based on the three transport models.

2.5. Mass Balance Approach

CH4 emission fluxes were determined by using the mass balance approach [White et al., 1976] for comparison
with the inversions. In this study, we use this approach to quantify CH4 emissions by using measurements
made both upwind and downwind of the emission sources. We estimate the total CH4 emissions from the
D2 subregion of the SJV when favorable meteorological conditions were observed, including steady horizon-
tal winds, and a well-developed PBL that was well mixed vertically. The uncertainties associated with the
assumptions of the technique are included. The details of the mass balance approach are described in
Peischl et al. [2015].

3. Results and Discussion
3.1. San Joaquin Valley CH4 Emission Estimates From the Inversions

We optimize the spatially resolved CH4 emission estimates in the SJV by using the mesoscale inverse model-
ing system with the CalNex airborne measurements (Figure 5). The optimized estimates are from two inde-
pendent inversions using observations in the May and June 2010 flights. The May and June inversions
derive similar total CH4 emission estimates for the SJV (Table 1). We estimate the total CH4 emissions from
the SJV to be 135± 28Mg/h in May 2010 and 135± 19Mg/h in June 2010. The difference in total emissions
between May and June is statistically insignificant. In general, the spatial patterns of the CH4 prior inventory
are consistent with those of the optimized emission estimates (Figure 5). However, the optimized emissions

Table 3. Optimized CH4 Emissions in May and June From Each of Three Transport Models and the Overall Results

May June

SJV
(Mg/h)

D1
(Post)
(Mg/h)

D2
(Post)
(Mg/h)

r2

(Prior)
r2

(Post)

Bias
(Prior)
(ppbv)

Bias
(Post)
(ppbv)

SJV
(Mg/h)

D1
(Post)
(Mg/h)

D2
(Post)
(Mg/h)

r2

(Prior)
r2

(Post)

Bias
(Prior)
(ppbv)

Bias
(Post)
(ppbv)

WRF1 142 ± 20 81 ± 15 61 ± 13 0.38 0.76 �60.6 �10.0 143 ± 19 93 ± 15 50 ± 12 0.47 0.70 �35.7 �3.8
WRF2 156 ± 22 88 ± 17 68 ± 14 0.38 0.69 �62.7 �10.4 129 ± 18 70 ± 12 59 ± 13 0.33 0.60 �31.7 �4.5
WRF3 108 ± 16 71 ± 14 37 ± 8 0.42 0.75 �49.9 �7.8 134 ± 17 75 ± 13 59 ± 12 0.37 0.77 �31.8 �3.4
Overalla 135 ± 28 80 ± 17 55 ± 18 135 ± 19 79 ± 17 56 ± 13
Overalla,b 149 ± 22 84 ± 17 65 ± 14 136 ± 20 81 ± 18 55 ± 13

aFor each inversion (Xi ± σi), we randomly select 10,000 values from the data range ofXeN Xi ; σið Þ. The overall estimate is themean of all 30,000 (20,000) selected
values from the three (or two) inversions, and the associated uncertainty is the standard deviation of these values.

bIncluding WRF1 and WRF2 simulations only, because WRF3 had a large bias in simulating PBLH in D2 in the May inversion case (see Table S1).

Journal of Geophysical Research: Atmospheres 10.1002/2016JD026398

CUI ET AL. METHANE EMISSION ESTIMATES IN SJV OF CA 3693



in May and June both indicate that the magnitudes of the prior emissions in the SJV are much lower than the
optimized estimates (Figures 5b and 5d). The highest emission rates (and the largest adjustments to the prior)
are seen in the region from Hanford to Visalia in the southern subregion (D1) and from Merced to Stanislaus
in the northern subregion (D2) of the SJV. Our optimized estimates on average in the SJV are higher by a
factor of 1.7 than the prior estimates based on the CALGEM inventory.

The optimized total CH4 emission estimates from each transport model are shown in Table 3. The transport
model evaluations shown in Table S1 indicate that WRF3 has a large (57%) bias in simulating PBLH in D2 for
the May inversion case. Therefore, in Table 3 we also list the overall estimates based only on WRF1 and WRF2
simulations. In May, using only these two simulations results in only a 10% difference in estimated SJV CH4

emissions compared with the results based on three WRF simulations; differences in June are much smaller.
We therefore base our main conclusions on results from the three WRF simulations for both May and June.

To evaluate the optimized emissions, we compare the measured CH4 enhancements above background and
those simulated by FLEXPART-WRF using the optimized emissions estimates and the prior estimates
(Figures 6 and 7 and Table 1). The FLEXPART-WRF simulation using the optimized emissions captures the
observations with a coefficient of determination (r2) of 0.76 and 0.71 for the May and June inversions,
respectively. These correlations are higher than for the simulations using the prior estimates (r2 = 0.49 and
0.47, respectively). Moreover, there is a large decrease in the mean bias using the optimized emissions.
The mean biases between the observed and simulated CH4 enhancements using the prior inventory in
the May and June inversions are �55.2 and �31.8 ppbv, respectively. In contrast, the observed-simulated
biases using the optimized emissions are only �9.1 and �5.5 ppbv, respectively, an 83% decrease for both
inversions compared to the corresponding results based on the prior inventory. Additionally, the vertical
profiles of CH4 mixing ratios are well captured by the models when we use the optimized CH4 emission
estimates (Figure 4).

Figure 5. (a–d) Two-dimensional maps of CH4 emission estimates in the San Joaquin Valley from this study. Figures 5a and
5c are average optimized emissions using the airborne measurements from two May flights and two June flights,
respectively. Figures 5b and 5d are the corresponding differences between the optimized emission estimates and the prior
emission inventory in Figure 1a.
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We compare optimized emission estimates in the present study to the top-down estimate from Jeong et al.
[2013, 2016] (Table 1). The total emission estimates for the SJV in this study are similar to estimates from
Jeong et al. [2016] (98–170MgCH4/h). In this study, we use many more grid clusters than the number of grid
cells in Jeong et al. [2013] to invert for the surface fluxes in the SJV. The total emission estimates are similar,
while the partitioning of CH4 emissions between subregions D1 and D2 differs between our study and Jeong
et al. [2013]. We estimate the total CH4 emissions fromD1 to be 80 ± 17Mg/h inMay and 79 ± 17Mg/h in June
(Table 1) and the total CH4 emissions from D2 to be 55± 18Mg/h in May and 56± 13Mg/h in June. The dif-
ferences between May and June are statistically insignificant. The estimated emissions for D1 are lower than

Figure 7. The relationship between observed and simulated CH4 enhancement mixing ratios for the (left) May and (right)
June flights. The simulated data points are average values based on three transport models (the solid lines in Figure 6).
The lines indicate the least squares fits to the data. We show correlations between observations and simulations with either
the optimized emissions (red) or the prior inventory (blue). All correlations are significant with P< 0.05.

Figure 6. Airborne measurements of CH4 enhancement mixing ratios, ΔCH4 (measured mixing ratios in Figure 2 above a
background derived for each flight; see text for details) (black line); simulations of ΔCH4 from FLEXPART-WRF based on
the prior inventory (blue lines); and simulations from FLEXPART-WRF based on the optimized emissions (red lines). The solid
lines are average values based on the three transport models, and the shading represents the standard deviation (1-sigma)
of three transport models.
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those of Jeong et al. [2013], while those for D2 are higher on average than those of Jeong et al. [2013]. Jeong
et al. [2013] only used two grid cells to represent the domain of the SJV in their inversions, while we substan-
tially improved the spatial resolution by aggregating 4544 grid cells (0.1° × 0.1°) into 2024 clusters. The differ-
ence in spatial resolution between the two studies results in different transport and emissions estimates.

3.2. San Joaquin Valley CH4 Emission Estimates From the Mass Balance Approach

We use the same CalNex aircraft measurements and an independent mass balance approach to derive CH4

emissions from the SJV. We determined emissions in the northern SJV subregion (D2) by using measure-
ments from the 12 May flight, the only day with favorable meteorological conditions in the Central Valley
during CalNex.

On the 12 May flight, the upwind transect in San Joaquin County (Figure 1c) resulted in a CH4 flux of
28 ± 19Mg/h (1-sigma uncertainty) coming mainly from the nearby Sacramento Valley. The downwind trans-
ect in Merced County resulted in a flux of 97 ± 45Mg/h. The difference between the upwind and downwind
transects, 69 ± 47Mg CH4/h, represents the estimated emissions from subregion D2, assuming that the
upwind sources were constant while the wind traveled from the upwind transect to the downwind transect.
Details of the mass balance calculation are given in Table 4. Within the stated uncertainties, the mass balance

Table 4. Mass-Balance Inputs for the Northern San Joaquin Valley

Northern SJV
Transect(s)

Terrain Ht.
(m asl)

Adjusted Mixing Ht.
(m asl)

Wind Direction
(deg)

Wind Speed
(m/s)

Estimated CH4
Background (ppb)

CH4 Flux
(1026 molecule/s)

CH4 Flux
(Mg/h)

Upwind average 41 ± 41 1194 ± 243 299 ± 18 4.6 ± 2.0 1900 ± 5 2.9 ± 1.4 28 ± 19
Downwind average 89 ± 89 1361 ± 271 330 ± 21 6.1 ± 2.5 1900 ± 7 10.1 ± 4.7 97 ± 45

Figure 8. CH4 enhancement mixing ratios simulated by the FLEXPART-WRF model based on the optimized CH4 emissions
from the whole domain (all, green lines) and due to CH4 emissions from only one specific subregion (either D1 or D2).
Flights 0507 and 0616 mainly flew over D1 but were impacted by air masses from D2. Flights 0512 and 0618 mainly flew
over D2 and were rarely impacted by air masses fromD1. The percentages shown in the titles represent the contributions of
emissions from this other subregion (D1 or D2) to the overall airborne measurements of CH4 mixing ratios in each flight.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD026398

CUI ET AL. METHANE EMISSION ESTIMATES IN SJV OF CA 3696



emission estimate agrees with our inversion in D2 (55 ± 18MgCH4/h in May). Therefore, an independent
method purely based on the measurements confirms our optimized inversion results.

We did not conduct a mass balance analysis for the southern SJV region (D1) in this study because CH4 sur-
face emissions from D2 strongly influenced CH4 in D1 (Figure 8). In addition, the nighttime Fresno eddy [Bao
et al., 2008] complicates the application of a mass balance approach to the flights over D1, such as leading to
a buildup of CH4 enhancements in the entire domain the following day and violating the steady wind
assumption. Therefore, favorable conditions for mass balance estimates in D1 were difficult to obtain during
CalNex. Similarly, winds over the D1 and D2 regions during the June flights had a westerly component that
transported emissions through the eastern edge of the San Joaquin Valley and beyond the extent of the
downwind flight legs, so we could not carry out mass balance estimates by using the June flights. These lim-
itations to using the mass balance approach in the SJV show the value of inverse modeling estimates for
the region.

3.3. Major Source Contributions in the San Joaquin Valley

Livestock sources (including dairies and animal feeding operations) are the largest source of CH4 emissions in
both subregions of the San Joaquin Valley. Livestock and oil/gas production sources are rarely collocated in
the same 0.1° grid cell. In the few cases where a grid cell contains more than one CH4 source, the source type
of the cell is determined by the dominant source. Combining our optimized 0.1° resolution CH4 emission
estimates (Figure 5) and the locations of two major sources (Figure 1b), we estimate the CH4 emissions from
livestock sources in the SJV to be 103± 29Mg/h and 105± 25Mg/h for May and June, respectively (Table 5),
which are higher than the prior CH4 emissions by a factor of 1.8. Livestock emissions contribute 75–77% of
the total CH4 emissions in the SJV according to our optimized results on average. Our estimates are consistent
with the analysis of Jeong et al. [2016], who estimate that SJV CH4 emissions from the livestock source
sector are 81–177Mg/h. Moreover, our finding for livestock sources is consistent with the analysis of
Johnson et al. [2016], who estimate a factor of 2 higher emissions from a top-down approach compared with
the CALGEM inventory.

Active oil/gas wells are mainly located in the southern SJV (Figure 1b). We estimate CH4 emissions in the SJV
from the active oil/gas wells to be 24± 11Mg/h in May and 21± 7Mg/h in June (Table 4), which are higher
than the prior CH4 emissions by a factor of 1.6. On average, the well emissions contribute 15–18% of the total
CH4 emissions in the SJV according to our optimized results. Our results are in agreement with the Jeong et al.
[2014, 2016] estimates of 19Mg/h from oil and natural gas production in the SJV.

We also calculate the fractional adjustment in each of the two sources relative to the fractional change
between the prior and optimized estimates of the SJV total CH4 emissions. On average, livestock sources
explain 82–86% of the discrepancy between our prior and optimized estimates, while oil/gas production
explains 13–18% of the discrepancy.

4. Conclusions

Using airborne measurements collected during the CalNex 2010 study, we apply a mesoscale inverse model
to perform a top-down estimate of CH4 emissions in the San Joaquin Valley of California. Our optimized esti-
mates of total CH4 emissions in the San Joaquin Valley in May 2010 (June 2010) are 135 ± 28 (135 ± 19)

Table 5. Prior and Optimized CH4 Emissions From Two Major Source Sectors and Their Contributions to the San Joaquin Valley

Prior
(Mg/h)

Livestock Oil/Gas

Inversion (Mg/h) Contribution
Prior
(Mg/h)

Inversion (Mg/h) Contribution

May June May June May June May June

This studya 57 103 ± 29 105 ± 25 75% 77% 14 24 ± 11 21 ± 7 18% 15%
This studya,b 114 ± 28 106 ± 26 83% 77% 26 ± 12 21 ± 7 19% 15%
Jeong et al. [2016] 81–177 86% Jeong et al. [2016] 19 11–19%

aThe calculations of the final estimates are the same as Table 3.
bIncluding WRF1 and WRF2 simulations only, because WRF3 had a large bias in simulating PBLH in D2 in the May inversion case (see Table S1).
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MgCH4/h. Our optimized CH4 emission estimates are higher by a factor of 1.7 than the prior estimates based
on CALGEM.

We compare our inversions based on CalNex 4 days of aircraft measurements with inversions conducted by
using tall tower measurements [Jeong et al., 2013, 2016]. The total SJV CH4 emissions derived from these com-
plementary inversion approaches agree within the uncertainties, while our inversions provide SJV emissions
estimates at a finer spatial distribution than these previous studies. The optimized spatial emission informa-
tion that we derive helps to refine source attributions. We also compare our inversions with the annual
average SJV CH4 emissions (107MgCH4/h) from a recent national bottom-up CH4 inventory [Maasakkers
et al., 2016], and within the uncertainties our optimized estimates agree with these bottom-up estimates.

Our optimized estimates, based on only 4 days of aircraft measurements in the summer of 2010, do not
capture episodic or seasonal variations in SJV emissions. Therefore, we cannot carry out fully quantitative
comparisons with the annual average emissions of the CALGEM prior andMaasakkers et al. [2016] inventories,
nor with the longer analysis periods of the inversions performed by Jeong et al. [2013, 2016] in different years
than 2010.

Compared with the prior CALGEM inventory, our optimized estimates for CH4 emissions from livestock
sources are higher by a factor of 1.8, while our optimized CH4 emissions from oil/gas production are higher
by a factor of 1.6. Livestock are the most important source of CH4 emissions in the SJV, and we find that
livestock sources explain most of the discrepancies between the prior and our optimized CH4 emission esti-
mates. Our use of high-frequency aircraft observations and a model with high spatial resolution allows us to
distinguish signals from livestock and oil/gas sources and to provide a quantitative top-down constraint on
the emissions from these sectors.

To validate our optimized emission estimates, we also conduct a mass balance estimate for one flight and
one subregion as an independent approach. Our optimized estimates are in agreement with the mass
balance estimate within the combined uncertainty of the two approaches. The mass balance method using
aircraft observations can be used to estimate emissions from a region under favorable meteorological condi-
tions, but such conditions do not always occur. For instance, no mass balance estimates could be performed
for the southern SJV in this study. Mesoscale inverse modeling therefore offers a reliable, complementary
technique for quantifying emissions from multiple CH4 sources over a large area.

Our inversions based on high-quality aircraft measurements provide estimates of CH4 emissions in the San
Joaquin Valley that agree with previous inversion calculations based on tall tower observations. These
independent top-down estimates confirm that major CH4 sources in the Valley are underestimated by the
CALGEM prior inventory. This study shows that applying an inverse model to tower and aircraft measure-
ments to assess and improve emissions estimates can inform bottom-up inventories and could ultimately
be useful in evaluating emission reduction strategies.
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